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Abstract—We estimate the first cross-sectional index of transaction-based
land values for every U.S. metropolitan area. The index accounts for geo-
graphic selection and incorporates novel shrinkage methods using a prior
belief based on urban economic theory. Land values at the city center
increase with city size, as do land-value gradients; both are highly variable
across cities. Urban land values are estimated at more than two times GDP
in 2006. These estimates are higher and less volatile than estimates from
residual (total – structure) methods. Five urban agglomerations account for
48% of all urban land value in the United States.

I. Introduction

WE estimate the first index of land values across U.S.
metropolitan areas that is based on directly observed

market transactions and cross-sectionally comparable. Stan-
dard economic theory (e.g., Roback, 1982; Brueckner, 1983;
Albouy, 2016) suggests that this index captures differences
in the combined value of household amenities, employment,
and building opportunities, ignoring cross-metro externali-
ties. Urban land values have been central to questions of
wealth, income, and taxation since the seminal works of
Ricardo (1821) and George (1884).

Unfortunately, market data on land values have been noto-
riously piecemeal and subject to numerous measurement
challenges. Flow of funds (FOF) accounts of the Federal
Reserve stopped publishing series for land value in 1995
because of accuracy concerns made plain by negative val-
ues inferred for land. We aim to overcome these challenges
using a large national data set of market transactions of
land from the CoStar COMPS database and an economet-
ric model informed by urban theory. Our estimates of urban
land values prove to be higher and more stable than values
implied by the FOF.

Our indices of both central and average land values
have intuitive properties. While they vary considerably, the
indices increase with city area, providing nuanced support
for the monocentric city model of Alonso (1964), Mills
(1967), and Muth (1969). The highest central land values

Received for publication August 31, 2015. Revision accepted for publi-
cation June 26, 2017. Editor: Bryan S. Graham.

* Albouy: University of Illinois and NBER; Ehrlich: University of Michi-
gan; Shin: University of Illinois.

We thank Henry Munneke, Nancy Wallace, and participants at seminars at
the AREUEA Annual Meetings (Chicago), Ben-Gurion University, Brown
University, the Federal Reserve Bank of New York, the Housing-Urban-
Labor-Macro Conference (Atlanta), Hunter College, the NBER Public
Economics Program Meeting, the New York University Furman Center,
the University of British Columbia, the University of California, the Uni-
versity of Connecticut, the University of Georgia, the University of Illinois,
the University of Michigan, the University of Rochester, the University of
Toronto, the Urban Economics Association Annual Meetings (Denver), and
Western Michigan University for their help and advice. We especially thank
Morris Davis, Andrew Haughwout, and Matthew Turner for sharing data,
or information about data, with us. Nicolas Bottan provided outstanding
research assistance. The National Science Foundation (grant SES-0922340)
generously provided financial assistance.

A supplemental appendix is available online at http://www.mitpress
journals.org/doi/suppl/10.1162/rest_a_00710.

are found in New York, Chicago, Washington, San Fran-
cisco, and Los Angeles. In these cities, central values are 21
times higher than peripheral values 10 miles away, although
across all cities, the (unweighted) average ratio of central
to peripheral values is only 4. Over their entire urban areas,
New York, Jersey City, Honolulu, San Francisco, and Los
Angeles–Long Beach have the highest average values, which
are 82 times higher than those in the lowest five cities. Values
in 2009 averaged $373,000 per acre, down from $624,000 in
2006, as the total value of urban land fell from $28 million
to $18 trillion, or from 2.2 to 1.3 times GDP.

II. Description of Transactions Data and
Urban Land Area

Our primary data source is the CoStar COMPS database,
with land transaction prices recorded between 2005 and
2010.1 CoStar provides fields containing the price, lot size,
address, and a proposed use for each property. We exclude
transactions CoStar has marked as non-arm’s-length, with-
out complete information, that feature a structure, are over
60 miles from the city center, or are less than $100 per acre.
The remaining data set contains 68,756 observed land sales.2

The “cities” we examine correspond to 1999 OMB def-
initions of Metropolitan Statistical Areas (MSAs). Some
MSAs, known as consolidated MSAs (CMSAs) are divided
into constituent primary MSAs, which we treat as separate
cities. In 2000, all MSAs accounted for 80% of the U.S.
population. Because MSAs consist of counties, which often
contain a large amount of agricultural land, we consider only
land that is part of an urban area by 2000 Census definitions.
The main requirement is that the area consists of contiguous
block groups with a population density of over 1,000 resi-
dents per square mile (1.56 per acre), with a total population
of over 2,500.

We take city centers to be the city hall or mayor’s office
of each city. Many MSA names contain multiple cities (e.g.,
Minneapolis–St. Paul). We address this by considering each
named city as having its own center. Land parcels within
the MSA are assigned to the city center closest in Euclidean

1 The CoStar Group claims to have the commercial real estate industry’s
largest research organization. The COMPS database provided by CoStar
University is not publicly available but can be accessed for free by aca-
demics. The data include transaction details for all types of commercial
real estate. We use every sale CoStar considers “land.” Recently, a small
literature has used this data for analyses within metro areas. Haughwout,
Orr, and Bedoll (2008) demonstrate the data’s extensive coverage and con-
struct a land price index for 1999 to 2006 within the New York metro area.
Kok, Monkkonen, and Quigley (2014) document land sales within the San
Francisco Bay Area and relate sales prices to topographical, demographic,
and regulatory features. Nichols, Oliner, and Mulhall (2013) construct a
panel of land-value indices for 23 metros from the 1990s to 2009. These
indices are for use over time and are not comparable across metros.

2 Appendix A provides additional detail on the data treatment.
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distance. In such cases, our central values average the named
centers.

Online appendix figure A.1 displays the geographic pat-
tern of land sales for four CMSAs: New York, Los Angeles,
Chicago, and Houston. The figure shows that land sales are
well dispersed throughout the metro areas, with sales activity
more frequent near city centers.3

III. Econometric Methods

There are two major obstacles to constructing a cross-
metropolitan land value index from observed transactions
data. First, observed transactions are not a random sample
of all parcels in a city. Second, we observe few sales in
many smaller metro areas, reducing the reliability of the
estimates. Our econometric methods try to overcome both
of these obstacles.

A. Regression Model of Land Values over Space and Time

Following the monocentric city model, we take each city j
as having a fixed center, with coordinates zc

j . Land values, r,
vary according to a city-specific polynomial in the distance
metric, D(zij, zc

j ), between plot i’s coordinates zij and the
center. City center values αjt may vary by year, t; coefficients
δjk , which determine the shape of the value-distance gradient,
are held constant over time due to limited sample sizes:

ln rijt =
2010∑

t=2005

αjt +
K∑

k=1

δjk
[
D(zij, zc

j )
]k + Xijtβ + eijt ,

eijt ∼ i.i.d. N(0, σ2
e). (1)

Controls Xijt include proposed use and lot size. The idiosyn-
cratic error term, eijt , follows an independent and identically
distributed normal distribution.4

3 Land transactions are not randomly distributed over space. Yet as Haugh-
wout, Orr, and Bedoll (2008) comment on the New York data, “Overall,
vacant land transactions occurred throughout the region, with a heavy con-
centration in the most densely developed areas.” As Nichols, Oliner, and
Mulhall (2013) discuss, it is impossible to correct for all types of selection
bias without observing transaction prices for unsold lots, a logical con-
tradiction. Fortunately, the literature has generally found selection bias to
be minor for land and commercial real estate prices. Colwell and Munneke
(1997), studying land prices in Cook County, Illinois, report, “The estimates
with the selection variable and those without are surprisingly consistent
for each land use.” Studying the office market in Phoenix, Munneke, and
Barrett (2000) find that “the price indices generated after correcting for
sample-selection bias do not appear significantly different from those that
do not consider selectivity bias.” In their construction of metro price indices,
Munneke and Barrett (2001) report, “Little selection bias is found in the
estimates.” Finally, Fisher, Geltner, and Pollakowski (2007), in their study
of commercial real estate properties, state, “Sample selection bias does not
appear to be an issue with our annual model specification.” Nevertheless,
we correct for selection bias on observables in section III.

4 We define D(zij , zc
j ) = ln

(
1 + ‖zij − zc

j ‖
)
, using Euclidean distances in

miles. Adding 1 in the logarithm argument creates two desirable features.
First, it dampens the effect of small changes in distance very close to the
city center. Second, it makes D operate as a distance metric, so that the αjt
coefficients may be interpreted as (finite) log land values at the city center.
Since the true gradient may vary along rays with different angles from the
center, this serves largely as an averaging technique, used for comparisons

Figure 1a shows estimated first-order and fourth-order
polynomials for the Houston MSA, along with the under-
lying transaction prices. Both polynomials slope downward
with distance, but the fourth-order polynomial reveals a
subtler distance function.

B. Shrinkage Estimation and Its Target “Meta-City”

To deal with limited sample sizes, we develop a hierar-
chical model. It “shrinks” metro-level estimates toward a
national average function. This function target depends on
each city’s urban area, Aj. We begin by decomposing the cen-
tral value αjt into two components, αjt = αj+α�

jt , where α�
j2005

is normalized to 0. The time-varying component follows the
prior α�

jt ∼ N(τt , σ2
t ). Vectorizing the distance coefficients

δj = [
δj1 δj2 · · · δjK

]′
, time-invariant cross-sectional priors

are modeled as[
αj

δj

]
=

[
a0 a1

d0 d1

] [
1

ln Aj

]
+

[
eα, j

eδ, j

]
,

[
eα, j

eδ, j

]
∼ i.i.d. N

([
0

0

]
,

[
Σαα Σαδ

Σδα Σδδ

])
. (2)

This technique essentially constructs a “metacity” described
by the parameters a0, a1, δ0, and δ1. The metacity provides
the land rent gradient typical of a city with area Aj. This area
adjustment is important as larger cities typically have higher
central land values. These land values descend and dovetail
with agricultural (or other nonurban) values at different rates
from the center than in smaller cities. The model allows for
a full covariance matrix between the random components of
the intercept and distance coefficients, eα, j and eδ, j.

When all other parameters are known and α�
jt = 0, the best

linear unbiased predictor (BLUP) for [αj, δ′
j]′ is a weighted

average between their prior mean and conventional metro-
level (fixed effect) estimates, [̂αj,̂δj]′:[

α̃j

˜δj

]
= Wj

[
a0 a1

d0 d1

] [
1

ln Aj

]
+ (I − Wj)

[
α̂j

̂δj

]
, (3)

where the weighting matrix Wj accounts for the amount of
shrinkage in city j. This shrinkage term falls with the number
of observations in city j and rises with the uncertainty in the
prior (Σαα, Σδα, Σδδ) and the idiosyncratic error term (σ2

e).
The second component in the intercept, α∗

jt , captures the
city-specific time trend. By similar logic, we shrink the
MSA-level time trend toward the national-level time trend,
τt , where the degree of the heterogeneity in MSA-level time
trends is allowed to change over time through σ2

t .

across cities. Some cities have land rent gradients that decline monotonically
from the center all the way to their agricultural fringe. Others see a dip in
central city values that rise again for the inner suburbs, before declining
again at the fringe.
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Figure 1.—Example of Land Value Gradient Estimates for the Houston Metro Area
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Our empirical model is then completed by specifying
the joint distribution of error terms, controls, and the prior.
We assume that observed control variables are random and
strictly exogenous. That is, for each city j, the error term
vector ej = {{eijt}nj

i=1}2010
t=2005 is uncorrelated with the con-

trol vector {{D(zij, zj
c), . . . , D(zij, zj

c)K , {X ′
ijt}2010

t=2005}nj
i=1, ln Aj}

and the random component of the coefficient vector
{eα, j, eδ, j

′, α�
j2006, . . . , α�

j2010}. In addition, the random compo-
nent of the coefficient vector is uncorrelated with the control
vector a priori.

In practice, to estimate the BLUP for the random inter-
cept and gradient parameters, the unknown fixed parameters
(β, a0, a1, d0, d1) and variance parameters (σ2, Σαα, Σαδ, Σδδ)

must also be estimated. To do this, we adopt an empir-
ical Bayes-type approach in which these parameters are

found by maximizing the marginal likelihood with a flat
improper prior. Then we obtain estimates for [αjt , δ′

j]′ by
substituting these estimates into the posterior mean formula
as if the fixed and variance parameters were known. Appen-
dix B describes the shrinkage procedure in much greater
detail.

C. Integrating Land Values over the Urban Area

We use the estimated land value functions to compute
average land values over each city’s urban area in each year.
For each census tract l in city j in year t, we calculate the
predicted land value r̂ljt at the tract centroid. The predicted
value is based on the expected characteristics X (planned
use and lot size) of the tract, conditional on the city, distance
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Table 1.—Econometric Model Cross-Validation Results

Model Specification

(1) (2) (3) (4) (5) (6) (7)

A: Three observations per city-year
Mean squared error 1.640 1.143 0.939 0.938 0.936 0.936 0.935
Bias −0.004 0.013 0.016 0.013 0.013 0.013 0.013
Variance 1.586 1.105 0.910 0.909 0.907 0.906 0.905

B: Thirty observations per city-year
Mean squared error 1.449 0.912 0.904 0.902 0.898 0.897 0.896
Bias −0.004 −0.003 0.001 0.000 0.001 0.001 0.000
Variance 1.441 0.907 0.899 0.898 0.893 0.892 0.891

Shrunken? No No Yes Yes Yes Yes Yes
Polynomial order: Distance 0 1 1 2 3 4 4
Polynomial order: Lot size 0 1 1 1 1 1 3

Out-of-sample cross-validation exercise described in detail in appendix B. Column 1 shows results of a naive model that is the simple average of values per acre. Columns 2 through 7 contain controls for all
covariates in appendix table A1. Panel A shows results for an exercise in which three observations per city-year are combined with all out-of-city data to predict remaining land values in city. Panel B shows results for
an exercise in which thirty observations per city-year are combined with all out-of-city data to predict remaining land values in city. Out-of-sample predictions in both panels were conducted in 58 cities that had at
least 50 observations per year for at least two years.

from the center and coast, and observed transaction data. We
then assign that average value to the entire tract.5 This value
is then multiplied by the area of each tract Ajl, excluding any
nonurban block groups. The total value of land in city j is
then Rjt = ∑

l Ajl r̂ljt , and the average value is rjt = Rjt/Aj.
In other words, total land values in city j are the volume
of the estimated land value “cone,” while the average land
value is the cone’s average height. Figure 1b displays the
estimated cone for the Houston MSA, with the small dots
representing Census tract centers. Very high land values at
the city center are clearly visible in the figure, which also
shows slightly elevated values for the Census tracts near the
coastline.

The estimated “meta-city” parameters allow us to impute
land values for metros with no observations, in which case
Wj = I. Tract values are imputed based on typical inter-
cepts and gradients for cities of size Aj in year t, using their
position relative to the closest city center and coastlines.

D. Model Selection and Cross-Validation

The cross-validation exercise summarized in table 1
assesses the performance of several econometric specifica-
tions, as detailed in appendix B. The exercise fixes a number
of MSAs and retains a few observations per year. It then
uses those few observations and the model estimates from
other MSAs to predict the values of the nonretained observa-
tions. The mean squared error (MSE) between the predicted
price and the actual price of these nonretained observations
is used to assess the model. Results in panel A retain three
observations per city-year; panel B retains thirty.

The first specification, in column 1, is of a naive model that
takes the (geometric) average value per acre of all sales by

5 We include only tract centers within 60 miles of the city center. To
obtain the predicted characteristics X, we build and estimate a model for
characteristics X that is a similar but simplifed version of the hierarchical
model used for the land prices. The procedure and required assumptions
for the land value prediction at the tract centroid is discussed at length in
section 3 in appendix B.

metro. It establishes a baseline for other models to improve
on. The second column shows the results from a simple ver-
sion of model (1), with only linear city-specific terms in
distance (K = 1), as well as city-time specific intercepts,
measures of coastal proximity, controls for proposed use, and
a linear term in log lot size. This basic econometric model
lowers the mean squared error (MSE) over the naive model
substantially by reducing the variance of the estimates. The
third specification applies the empirical Bayes’ shrinkage
technique according to the prior (2), allowing both inter-
cepts and gradients to be random. As expected, this produces
a substantial improvement by further reducing the variance.
As seen by lower prediction errors, both the monocentric
regression model and the shrinkage technique help overcome
the obstacles of small samples and nonrandom locations.

The rest of the table considers what are minor improve-
ments. The fourth through sixth columns contain additional
distance polynomials to the model in equation (3). Allowing
for a more flexible distance gradient reduces the MSE only
moderately. The final column includes a cubic polynomial in
log lot size, which also slightly improves the prediction. As
further terms produce no noticeable improvement, we take
the model from column 7 with Bayesian shrinkage, a quar-
tic polynomial in distance, and a cubic polynomial in log lot
size as our preferred specification.

IV. Cross-Sectional Results

A. Patterns in the Data

Figures 2a to 2c plot estimated central land values, the
ratio of those values to values 10 miles from downtown, and
average land values, each against the urban area of the metro
area.6 The gray dots represent the unshrunken estimates;
the dark dots, the shrunken estimates. The vertical distances
between the two display how much the Bayesian approach

6 We take land values one-half mile from the point defined at the center
as our measure of central land values.
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Figure 2.—Estimation Results for All Metro Areas
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shrinks the estimates. Larger cities, which feature more
observations, experience less shrinkage, as the additional
observations make the prior less important.

The dashed upward-sloping line of best fit in figure 2a
reflects the tendency of larger cities to have more expensive
central land. A 10% increase in a city’s footprint implies an
8% increase in the central land value. The upward-sloping
fitted line in figure 2b reveals that land values in larger cities
are much higher centrally than values 10 miles away. For
the smallest cities, the gradient is offen nearly flat. In large
cities, the ratio is much larger but highly variable, even after
shrinkage. Together, these two patterns lead to the weaker,
but still positive, correlation between city size and average
urban land values in figure 2c. These empirical results are
generally supportive of a monocentric city with convex rent
gradients. Theoretically, these gradients steepen toward the
center as firms and households sort according to how their
bid per acre varies with distance. Furthermore, agents sub-
stitute away from using land in consumption and production
as it rises in price.7

While our main interest is estimating land values and
their cross-sectional differences by MSA, it is worth
briefly describing the estimated coefficients on the model
covariates, presented in appendix table A1. The most impor-
tant predictor of log value per acre is log lot size, which
enters the regression model as a cubic polynomial. The esti-
mates imply that price per acre is declining in lot size over the
size range. This is a standard result called the plattage effect,
described by Colwell and Sirmans (1993) in this review as “a
well-known empirical regularity.” It is often ascribed to costs
of subdividing land parcels, arising from both infrastructure
requirements, zoning laws, and bureaucratic costs.8

Most of the planned use regressors have statistically
and economically significant associations with land val-
ues. Retail, apartment, mixed-use, and medical proposed
uses have substantially higher values, while commercial,
industrial, and multifamily uses have lower values. Lots
with no planned use or a planned use of “hold for devel-
opment” or “hold for investment” also have lower values.
Not surprisingly, within-metro land values rise with coastal
proximity.

7 Combes, Duranton, and Gobillon (2016) also find that land-rent gradients
are steeper in large French cities than in small ones.

8 With such costs, large lots may contain more land than is optimal for
their intended use. For instance, a lot may have more land than is needed
to build an apartment building but cannot be subdivided into two lots on
which to build two apartment buildings. In that case, the price per acre of
the large lot will be lower than if it contained the optimal amount of land
for its intended use.

We have also computed our land value index using total parcel prices on
the left-hand-side variable in order to circumvent possible problems with
division bias. If lot size is measured with error, then the coefficient estimates
are subject to biases. In our log price per acre specification, classical mea-
surement error in log size biases the first coefficient toward −1. To check
on the robustness of our fit, we recompute the land value index based on the
log of total prices instead. The fitted land values are virtually identical, and
the correlation between the two land indices is essentially 1. Essentially all
that changes is the nature of the shrinkage estimation.

B. A Cross-Metropolitan Land Value Index

Table 2 presents urban land value estimates for selected
metro areas.9 The first two columns show the name of each
MSA and its rank out of 324 according to the estimated
average land value in our preferred model specification in
column 7 of table 1. Next are the urban (not total) areas
of each metro and the number of observed land sales. The
fifth column presents average values from the naive model.
Column 6 reports estimated central land values10 using the
preferred model, and column 7 presents estimated average
values across the urban area. Column 8 reports the estimated
ratio of central values to those 10 miles away. The last col-
umn provides the total value of urban land by metro, which
is totaled at the bottom of the table.

The numbers in columns 5 and 7 contrast the role of the
model-based estimator over the naive one. While the two are
positively correlated with a coefficient of 0.86, the standard
deviation of the naive estimates is 3.2 times higher than that
of the model-based estimates. For instance, New York has the
highest naively estimated value per acre, $26 million. Pitts-
field, Massachusetts, has the lowest naively estimated values,
$17,000. In general, MSAs with high naively estimated val-
ues benefit from favorable covariates, such as small lot sizes.

Overall, the estimates cover 76,581 square miles of urban
land. The total estimated value of this land is $25,025 bil-
lion on average over the sample period. The average value of
urban land was $511,000 per acre, with an unweighted stan-
dard deviation of $519,000 across metro areas. This average
implies a cost of roughly $100,000 for a typical fifth-acre
residential lot, or $2,000 for a typical parking spot.

The highest central land values are found in New York, at
a whopping $123 million per acre. The remaining top five are
Chicago, Washington, DC, San Francisco, and Los Angeles–
Long Beach, with values between $17 million and $38 mil-
lion. With the exception of tightly regulated Washington, all
of these central areas are known for their towering skylines—
see Ahlfeldt and McMillen (forthcoming) for an application
that ties land values to building heights in Chicago.

The New York PMSA has the highest average values as
well, $5.3 million per acre, even after averaging in several
counties in addition to New York County (Manhattan). The
next three highest averages are found in quality locations
with smaller land areas. For instance, Jersey City, a valuable
strip of 47 square miles with great views of Manhattan, is
second, with an average value of $3.3 million per acre. Hon-
olulu, which takes third place by a hair, is loaded with scenic
views, miles of coastline, and a desirable climate. San Fran-
cisco, which completes the almost three-way tie for second,
is famous for similar natural amenities, as well as a boom-
ing business environment. In fifth place, Los Angeles–Long
Beach has average values of $2.7 million per acre over its

9 Estimates for all MSAs in the sample are available in table A.3 of the
online appendix.

10 We take estimated values ½ mile from downtown as our estimate of city
center land values.
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Table 2.—Selected Metropolitan Land Value Indices, 2005–2010

Land Values ($000s/Acre)
Ratio of Total

Total Number of Central to Urban
Urban Area Land Naive Urban 10-Mile Land Value

Rank Metropolitan Area Name (square miles) Sales Model Central Average Values ($ billions)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 New York, NY 749 1,603 26,139 123,335 5,264 22.3 2,524.4
2 Jersey City, NJ 47 43 7,667 9,554 3,305 8.8 98.8
3 Honolulu, HI 198 56 4,357 16,256 3,290 7.0 416.3
4 San Francisco, CA 300 152 8,722 25,446 3,239 9.3 622.8
5 Los Angeles–Long Beach, CA 1,359 1,760 3,709 16,801 2,675 5.5 2,326.8
6 Orange County, CA 494 233 3,163 3,208 2,595 1.3 820.5
7 San Jose, CA 305 217 2,580 3,552 2,347 1.6 458.3
8 Miami, FL 372 1,233 3,052 4,478 1,794 3.2 427.5
9 Stamford-Norwalk, CT 179 19 2,753 2,740 1,505 3.2 172.4
10 Bergen-Passaic, NJ 316 79 1,957 4,145 1,423 3.7 287.7

16 Washington, DC-MD-VA-WV 1,458 1,840 3,548 36,913 1,214 32.6 1,133.0
22 Las Vegas, NV-AZ 317 2,553 1,193 1,841 849 2.4 172.4
26 Chicago, IL 2,035 3,511 1,455 37,632 663 35.1 863.3
27 Boston, MA-NH 1,295 122 1,243 8,457 600 9.8 497.5
32 Denver, CO 536 2,015 828 7,586 539 18.6 185.1
52 Phoenix-Mesa, AZ 897 5,946 370 3,529 452 8.4 259.4
99 Dallas, TX 1,057 811 454 2,774 305 10.1 206.4
118 Houston, TX 1,341 1,143 423 2,813 272 9.4 233.1
120 Detroit, MI 1,426 679 456 2,321 270 6.6 246.6
130 Atlanta, GA 2,105 5,229 402 1,750 251 5.5 338.6
227 Pittsburgh, PA 1,003 240 433 1,772 156 10.6 100.0

322 Glens Falls, NY 33 21 46 65 45 2.6 0.9
323 Jackson, MI 57 8 49 74 38 3.0 1.4
324 Jamestown, NY 46 10 43 63 30 2.1 0.9

Total United States 76,581 68,756 − − − − 25,024.8
Simple average, United States 235 212 591 1,672 344 3.7 76.8
Simple SD across metros 304 592 1,660 7,472 519 3.6 226.6
Weighted average, United States − 739 1,052 5,068 511 6.5 244
Weighted SD across metros − 1,214 2,701 13,850 715 7.2 430.9

MSAs are ranked by average urban land values. Land value data from CoStar COMPS database for years 2005 to 2010. The naive model is a simple average of observed prices per acre. The estimator allows land
values to depend on quartic polynomial in log distance from city center plus 1 mile, with random coefficients. City center land values are for ½ mile from downtown, and mile 10 land values are for 10 miles from
downtown. Weighted statistics for United States are weighted by total metropolitan urban area. Standard deviations are unweighted. See online appendix table A2 for complete list of MSAs. Averages and standard
deviations for the United States do not include MSAs for which there were no observed land sales.

extended area of 1,359 square miles. Note that L.A. is the
most populace PMSA in our sample, but is only sixth in total
land area.

The top ten cities in terms of average values are all on or
near saltwater coasts. Average land values are more mod-
erate in the Midwest and South: Chicago has an average
value of $663,000 per acre, and Pittsburgh has an average
of $156,000. Dallas, Houston, and Atlanta have averages
values roughly in the $250,000 to $300,000 per acre range.
The lowest values, at less than $50,000 per acre, are found
in small cities of Glens Falls, New York; Jackson, MI; and
Jamestown, New York, at less than $50,000 per acre.

Although the estimated rank correlation between central
and average land values is 0.85, the ratio of central values
to those 10 miles away varies considerably. The weighted
(unweighted) average is 3.7 (6.5), with a standard deviation
of 3.6 (7.2). Chicago, with its circumscribed Loop District,
has the highest ratio, 35.1, followed by Washington, DC,
with its political hub, at 32.6. The tenth percentile ratio of
central to 10 miles distant values is 1.6. San Jose, California,
and Orange County, California, are the most valuable cities
beneath that threshold, reflecting their decentralized urban
structures.

The New York PMSA has the greatest total land value of
any metro, at roughly $2.5 trillion.11 The Los Angeles–Long
Beach PMSA is not far behind, with a total value of $2.3 tril-
lion. When cities are aggregated to the CMSA level, the top
five for total urban land values are New York, Los Ange-
les, San Francisco, Washington, DC, and Chicago, which
together account for 48% of the value of all urban land in
the United States.

C. Comparing Transaction- and Residual-Based Estimates

A common approach to measure land values is to treat
them as the residual difference between a property’s entire
value and the estimated value of its structure.12 A caveat of
this method is that it equates the market value of a struc-
ture with its replacement value, neglecting adjustment costs
in building and irreversibilities in investment (Glaeser &

11 Barr, Smith, and Kulkarni (2016) estimate a geometric average value of
$991 billion for the island of Manhattan alone (less than 23 square miles)
during that time. Therefore, we consider our estimates of New York land
values, while high in absolute terms, to be within reason.

12 Case (2007) explains how to use FOF data to impute land values in this
way, using the replacement cost of housing structures.
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Gyourko, 2005). When the market value of structures falls
below replacement costs, the residual method assigns the
entire decrease to land values. The residual method can even
infer negative value to land, as Davis and Heathcote (2007)
do for residential land in 1940. Larson (2015) show that the
Flow of Funds approach implied the value of land in the
corporate business sector in 2009 was worth negative $178
billion (Bureau of Economic Analysis, 2013). Yet it seems
unlikely that there was no “buyer” in 2009 who would have
been willing accept $178 billion to take a long position on
all the corporate land in the United States.

Davis and Palumbo (2008; henceforth, DP) use the resid-
ual method to estimate an index of land values across 46
metros. Despite the differences in measurement and intended
coverage, we attempt to compare our index to theirs.13 To
compare acres and lots, we estimate average residential lot
acreage by metro and divide the DP numbers by this acreage.
To aggregate the DP values, we multiply their estimated
value per lot by the number of housing units in urbanized
Census block groups in the year 2000, counting rental units
as having half the land as an owned unit, which roughly
reflects national averages. This aggregation method avoids
estimating acreages but misses nonresidential land.14 Online
appendix table A.3 contains the estimates for the 45 MSAs
in both samples, which are plotted in figure 3.

Our transactions-based estimates imply higher land values
than the residual-based estimates: $722,000 versus $392,000
per acre. Across metros, the correlation coefficient between
the two is 0.72. The aggregated DP and transaction num-
bers are more strongly correlated, with a coefficient of 0.95.
Figure 3a contrasts the average values per acre, and figure 3b
contrasts the aggregate land values for each city. Recall these
are for all urban land in our transaction index and for resi-
dential land only in the DP index. Our transaction index is
higher than the DP index for nearly every city.

Looking at individual cities, both indices imply average
land values over $3 million per acre for San Francisco and
values near $60,000 for Charlotte. But for New York our
transaction index implies urban land values of $5.3 million
per acre versus $835,000 for the DP estimates. For Oklahoma
City, our index is $161,000 per acre, while the DP index
implies $24,000 per acre. These differences may arise from
the differences in the types of land considered: our index
includes highly valuable central and commercial land. Nev-
ertheless, our data sources and estimation technique seem to
play large roles. Furthermore, the value of transactional land

13 Their index is purely residential, for owner-occupiers only, and is
estimated by lot. Our transaction index is for all urban land (including
commercial and industrial), for owners and renters, and is estimated by
acre.

14 We divide by average lot size, since DP report an arithmetic average of
land value. This may introduce significant measurement error in some num-
bers. Using medians or geometric averages produces substantially higher
average values per acre. The DP (2008) index is quarterly; we take geo-
metric averages to arrive at annual and whole-sample values. Matching our
MSAs to their cities is typically straightforward using the name of the prin-
cipal city. We do not match their estimates for Santa Ana to the Orange
County, California, MSA, because we lack lot size information.

should reflect available building opportunities, good or bad,
while built-on land reflects the structure that is permitted de
facto.15

Over time, our transaction index implies smaller price
movements than the DP index within cities over the boom-
and-bust cycle in our data. This is seen in figure 3c, which
plots the estimated difference between the minimum and
maximum annual estimated average land values within each
city, expressed as a percentage of the maximum value. The
average coefficient of variation of land values within the 45
cities according to our index was 0.24 versus 0.44 in the DP
estimates. The greater volatility of the residual method is
also seen in the time series for aggregate U.S. land values,
which we consider below.

V. Aggregate Urban Land Values over Time

In this section, we sum our urban land values across met-
ros to calculate annual aggregate urban land values for the
United States.16 Table 3 presents these totals.

Over our sample period, average values peaked in 2006
at $624,000 per acre, an increase of 8% from 2005. Average
values then fell to near their 2005 levels in 2007, before
declining precipitously. By 2009, the average value was
roughly $373,000 per acre, 65% of its 2005 level. The ratio
of aggregate urban land values to GDP declined considerably
as well. The ratio was 2.1 to 2.2 in 2005 and 2006 before
declining to reach a value 1.28 by 2010.

For comparison, we construct a series for aggregate U.S.
land values using the residual method based on FOF data
(now the Financial Accounts of the United States). We sum
the total value of real estate at market value held by non-
financial noncorporate businesses, nonfinancial corporate
businesses, and households and nonprofit organizations to
arrive at the total market value of privately held real estate.
We then subtract the current-cost net stock of private struc-
tures to arrive at a residual-based value for land. In 2006,
the estimated value of real estate was $43.3 trillion, while
structures were valued at $26.3 trillion, implying that the
total value of land was $16.9 trillion. Our transactions-based
estimate, in contrast, is $30.4 trillion, nearly 80% higher, sig-
nifying that urban land is an even more important asset in
the U.S. economy.

In addition to the methodological differences, the totals
may differ because they cover different land. Our estimates

15 As Davis and Heathcote (2007) note, the residual method attaches “the
label ‘land’ to anything that makes a house worth more than the cost of
putting up a new structure of similar size and quality on a vacant lot.” Thus,
the residual method will attribute higher costs stemming from inefficien-
cies in factor usage (e.g., geographic and regulatory constraints that hinder
building) to higher land values. In a follow-up paper, Albouy and Ehrlich
(2016) use differences in the value of housing prices from land and structure
costs to measure the costs imposed by such constraints. See Glaeser and
Gyourko (2017) for a related but more reduced-form approach that assumes
land is a fixed fraction of housing costs.

16 Our sample includes observations from 324 of the 331 MSAs and
PMSAs in the 1999 OMB definitions. The combined imputed land value
for the seven metros with no data is $61 billion, less than 0.25% of our
aggregate number.
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Figure 3.—Comparison of Transactions-Based Index to Residual-Based Index



METROPOLITAN LAND VALUES 463

Table 3.—Urban Land Values in the United States, 2005–2010

S&P CoreLogic Total Urban
Average Urban Case-Shiller U.S. Land Value—

Average Urban Total Urban Land Value per Ratio of Total National HPI Residual
Land Value per Land Value Acre (Index, Nominal GDP Urban Land (normalized to Method

Year Acre($) ($ billions) 2005 = 100) ($ billions) Value to GDP 2005 = 100) ($ billion)

2005 $577,336 $28,117 100.0 $13,094 2.15 100.0 $16,758
2006 623,950 30,387 108.1 13,856 2.19 106.8 16,931
2007 584,682 28,475 101.3 14,478 1.97 104.8 16,001
2008 513,413 25,004 88.9 14,719 1.70 95.5 9,569
2009 372,819 18,157 64.6 14,419 1.26 86.5 5,767
2010 392,683 19,124 68.0 14,964 1.28 84.2 6,234

Land-value data from CoStar COMPS database for 2005 to 2010. Residual method calculates total real estate holdings at market value of nonfinancial businesses, households, and nonprofit organizations from
Financial Accounts of the United States (formerly known as the flow of funds) and subtracts current-cost net stock of private structures from National Income and Product Accounts.

are based on total metro urban areas, including public lands
for roads, parks, and civic buildings. Assuming that the pub-
lic owns urban land worth 40% of the total value, only $18.2
trillion of land would be owned privately, which is much
closer to the FOF numbers. On the other hand, the FOF
numbers include land outside metro-urban areas, which we
exclude.

Land values calculated from the FOF fell even more dra-
matically than our series, down to only $5.8 trillion in 2009,
as opposed to $14.4 trillion. The peak-to-trough decline in
the transactions-based index was 40%, substantially less than
the 66% decline in the FOF.

Finally, we consider how land values compare with hous-
ing prices. The final column of table 3 reports the S&P
CoreLogic Case-Shiller U.S. National House Price Index,
normalized to have value 100 in 2005. Overall, land values
appear to have led house prices slightly and were substan-
tially more volatile than house prices over the sample period.
This result is consistent with the Bostic, Longhofer, and Red-
fearn (2007) land leverage hypothesis that housing should
have less volatile values than land.

VI. Conclusion

Our analysis combines insights from the economic mono-
centric city model with empirical Bayesian methods to
produce novel and plausible estimates of land values, even in
metros with relatively thin data. These methods might eas-
ily be applied to estimate other citywide measures, such as
wages or property prices. Relative to residual approaches,
our method suggests that urban land values may be higher,
less volatile, and less likely to be negative. Furthermore, the
model sheds light on the enormous differences in land val-
ues both across and within cities, with high central values
providing indirect support for monocentric cities, albeit with
heterogeneous value gradients.

We hope that the measures we provide may form the basis
of reliable estimates of aggregate land wealth. With addi-
tional data, future modeling could be enriched to incorporate
greater spatial structure and modifications for observed
land uses. The cross-sectional index should also prove use-
ful to researchers examining differences in amenities and
real-estate costs across metro areas.
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APPENDIX A

Additional Data Notes

When a CMSA contains multiple PMSAs, we treat each PMSA as its
own MSA for purposes of estimation and reporting. For instance, we treat
the Washington, DC-MD-VA-WV, and Baltimore, MD, PMSAs as separate
MSAs, although they are both parts of the Washington-Baltimore DC-MD-
VA-WV CMSA. For New York City, we use the Empire State Building as
the city center rather than city hall, following Haughwout, Orr, and Bedoll
(2008). We treat each named city in an MSA with a hyphenated city name
as having its own city center. For instance, we treat Minneapolis–St. Paul,
MN-WI, as containing two distinct cities, Minneapolis, MN, and St. Paul,
MN. However, we treat such cities as belonging to one MSA for purposes
of aggregating and reporting.

In the CoStar data, we consider twelve of the most common proposed
uses, which are neither mutually exclusive nor collectively exhaustive. We
consider an observation to feature a structure when the transaction record
includes the fields for “Bldg Type,” “Year Built,” “Age,” or the phrase “Busi-
ness Value Included” in the field “Sale Conditions.” We geocoded the lot
sales using the Stata “geocode” module of Ozimek and Miles (2011). In
addition to the exclusions discussed in the main text, we also exclude outlier
observations with a listed price of less than $100 per acre or a lot size over
5,000 acres, or farther than 60 miles away from the city center. We also
exclude lots we could not geocode successfully.

Median lot size is 3.5 acres versus a mean of 26 acres. Land sales occur
more frequently in the beginning of our sample period, with 21.7% of our
sample from 2005 and 11.4% from 2010. Residential uses are common
but by no means predominant in the sample—17.6% of properties have a
proposed use of single-family, multifamily, or apartments—23.4% is being
held for development or investment, and 16% of the sample had no listed
proposed use.

APPENDIX B

Computation

1. Estimation of Land Value Gradients: αjt and δj

For notational convenience we rewrite the model in equation (1) as

ln rijt = Z ′
ijtγj + Xijtβ + eijt , eijt ∼ N(0, σ2

e), (B1)

where Z ′
ijt = [

1, Dij , D2
ij , D3

ij , D4
ij , 12006

ijt , 12007
ijt , 12008

ijt , 12009
ijt , 12010

ijt

]
, with

Dij = D(zij , zc
j ), and where 1s

ijt is an indicator variable that takes value
1 if s = t and 0 otherwise. The parameter vector γj collects city- and
time-specific parameters with a multivariate normal prior distribution,

γj = [
αj , δj1, δj2, δj3, δj4, αj,2006, αj,2007, αj,2008, αj,2009, αj,2010

]′

∼ N(mγ, j , Vγ,0), (B2)

where

mγ, j =
⎛⎜⎝a0 + a1 ln Aj

b0 + b1 ln Aj

τ

⎞⎟⎠ and Vγ,0 =
⎛⎜⎝ Σαα Σαδ 0(1×5)

Σδα Σδδ 0(4×5)

0(5×1) 0(5×4) Σττ

⎞⎟⎠ (B3)

with τ = [τ2006, τ2007, τ2008, τ2009, τ2010]′ and Σττ = diag([σ2
2005, σ2

2006, σ2
2007,

σ2
2008, σ2

2009, σ2
2010]′). Conditional on fixed and variance parameters (θ =

[β, a0, a1, b0, b1, τ, σ2
e , Σαα, Σδα, Σδδ, Σττ]) and observed data for city j, the

posterior distribution of γj follows the multivariate normal distribution

γj|θ, Data ∼ N
(
m̃γ, j(θ), Ṽγ, j(θ)

)
(B4)

with a posterior mean as the weighted average between the prior mean
(mγ,0) and the fixed-effect estimate γ̂j = (Z ′

j Zj)
−1

[
Z ′

j

(
ln rj − Xjβ

)]
:

m̃γ, j(θ) = Wj(θ)mγ, j + [
I − Wj(θ)

]
γ̂j(θ)

where Wj(θ) = [
V−1

γ,0 + σ−2
e (Z ′

j Zj)
]−1

V−1
γ,0 . (B5)

Here we write Zj , ln rj , and Xj as matrices that stack elements only relevant
for the city j. The weighting matrix depends on the number of observa-
tions in the city j (nj), the relative size of the prior variance (Vγ,θ), and the
idiosyncratic error variance (σ2

e ). The posterior variance is

Ṽγ, j(θ) = [
V−1

γ,0 + σ−2
e (Z ′

j Zj)
]−1

. (B6)

It is well known that the posterior mean m̃γ, j(θ) is the best linear unbiased
predictor for γj given θ and the observed data. In our application, we do
not know θ. Instead of taking a full Bayesian approach and putting a prior
on θ, we take the empirical Bayesian approach in which θ is calibrated by
maximizing the following marginal likelihood (Laird & Louis, 1989):

θ̂ ∈ argmaxθ L(data|θ) =
∫

p(ln r|Z , X, θ, γ)dγ, (B7)

where the γ is integrated out from the likelihood function using an
improper prior, p(γ) ∝ 1 (see Harville, 1977). Then we treat θ̂ as a
known and fixed quantity and use the following posterior distribution for
the computation of land values and the prediction,

γj|Data ∼ N
(
m̃γ, j (̂θ), Ṽγ, j (̂θ)

)
. (B8)

One of the potential shortcomings of this approach is that it neglects
uncertainty coming from the estimation of θ, and the resulting posterior
distribution for γj underestimates uncertainty. Fortunately, we have a rel-
atively large amount of data about θ (about 67,000 observations in total).
Second, the practicality of our shrinkage estimator is evaluated by the out-
of-sample forecasting evaluation. However, we note that a full Bayesian
approach is possible (Zeger & Karim, 1991) at the cost of even longer com-
putation time. We choose to take the empirical Bayes approach because of
the out-of-sample evaluation of our shrinkage procedure.

2. Point Predictions for Land Values

Once we obtain the posterior distribution of γj , we can generate land
value predictions. For the cross-validation exercise, we generate and eval-
uate point predictions for the log-price of the land parcels in the city j at
time t with characteristic X∗

ijt and Z∗
ijt as the mean of the posterior predictive

distribution. In the standard case when we observe at least some data in city
j, the point prediction for the value of a land parcel is
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̂ln rijt =
∫

ln rijtp(ln rijt |data, X∗
ijt , Z∗

ijt)d ln rijt

=
∫ ∫

ln rijtp(ln rijt |data, X∗
ijt , Z∗

ijt , γj)p(γj|data)dγjd ln rijt

= Z∗′
ijt m̃γ, j (̂θ) + X∗′

ijt β̂, (B9)

where p(ln rijt |data, X∗
ijt , Z∗

ijt , γj) is defined by equation (B1) at θ̂, and
p(γj|data) is the multivariate probability density function with mean m̃γ, ĵθ

and variance-covariance matrix Ṽγ, j (̂θ).
We can also generate predictions for the land in cities where we do not

have observed transaction prices. This is based on our “metacity” for a city
with area Aj , using the prior with estimated hyperparameters, θ̂. In this case,
our prediction is just

̂ln rijt = Z∗′
ijt mγ, j (̂θ) + X∗′

ijt β̂. (B10)

3. Computation of Land Values

For each census tract l in city j in year t, we calculate the predicted land
value rljt at the tract centroid and assign that average value to the entire
tract.

Rjt =
L∑

l=1

r̂ljtAl , (B11)

where Al is the tract area we use the mean of the predictive distribution for
rljt as the predicted land value. That is,

r̂ljt =
∫

exp(rljt)p(rljt |data, X∗∗
ljt , Z∗∗

ljt )drljt

=
∫ ∫

exp(rljt)p(rljt |data, X∗∗
ljt , Z∗∗

ljt , γj)p(γj|data)drljtdγj

= exp
(
Z∗∗′

ljt mγ, j (̂θ) + X∗∗′
ljt β̂ + σ̂2

e/2 + Z∗∗′
ljt Vγ, j (̂θ)Z

∗∗′
ljt /2

)
, (B12)

where the last two terms are due to the log-normal correction. We can
also estimate values for cities with no observed land sales using only the
prior.

Since our land data are incomplete, some land characteristics such as lot
sizes and planned uses (a subvector of X∗∗

ljt ) are unknown at the tract centroid.
Therefore, we predict these characteristics based on what we do know of
the land, namely, its location. To do this, we decompose the predicted land
value in the following manner:

r̂ljt =
∫

exp(rljt)p(rljt |data, X∗∗
ljt , Z∗∗

ljt )drljt

=
∫ ∫

exp(rljt)p(rljt |data, X∗∗
ljt , Z∗∗

ljt , γj)

× p(γj , X∗∗
ljt |data, Z∗∗

ljt )drljtdγjdX∗∗
ljt

=
∫ ∫

exp(rljt)p(rljt |data, X∗∗
ljt , Z∗∗

ljt , γj)p(γj|data)

× p(X∗∗
ljt |data, Z∗∗

ljt )drljtdγjdX∗∗
ljt

= exp
(
Z∗∗′

ljt mγ, j (̂θ) + σ̂2
e/2 + Z∗∗′

ljt Vγ, j (̂θ)Z
∗∗′
ljt /2

)
×

∫
exp

(
X∗∗′

ljt β̂
)

p(X∗∗
ljt |data, Z∗∗

ljt )dX∗∗
ljt , (B13)

where the uncertainty about the unobserved land characteristic at the tract
centroid is captured by the predictive distribution function of X∗∗

ljt in the last
integral. We construct a model for each unobserved element in X∗∗

ljt using
observed characteristics of the tract l in city j. More specifically, the sth
element in X∗∗

ljt is modeled as

X∗∗
s,ljt = αx

s, j + δx
s, jDlj + γsClj + es,ljt , es,ljt ∼ i.i.d.N(0, σ2

s ), (B14)

where Dlj is the distance metric based on the distance between the tract
centroid and the city center, and Clj is log distance to coast from the tract
centroid. Then we replace unobserved elements in X∗∗

ljt in equation B13 with
their predicted values.

This technique is based on a similar but simpler version of the hierarchi-
cal model used for land prices. The intercept and coefficient on the distance
to the city center are allowed to vary across MSAs, but using only an affine
function as opposed to a quartic polynomial. The coefficient on the distance
to the coast is fixed.

Because these coefficients are not known, we estimate them using the
observed transaction data with the similar prior specification and assump-
tion employed for the estimation of model for the land price. More
specifically, the prior distribution for city-specific parameters αx

s, j and δx
s, j

follows a multivariate normal distribution. The mean vector is an affine
function of each city’s log urban area, and the variance-covariance matrix
is allowed to have nonzero off-diagonal elements. We impose similar exo-
geneity assumptions for αx

s, j , δx
s, j , and es,ljt . Finally, we assume that each

element in X∗∗
ljt is correlated only through observed tract characteristics Dlj

and Clj (equation B14). Because estimation and prediction for the land price
and land characteristics are performed conditional on distance variables, we
do not assume any specific distributional form for observed distance vari-
ables Dij and Cij . However, we assume that the marginal density of Dij puts
nonzero positive value on the entire MSA area. This last assumption implies
that if we do not have a transaction observation at a specific census tract,
this missingness is completely random, and we would eventually collect
observations from this tract as the sample size goes to infinity.

4. Cross-Validation

Cross-validation techniques help to determine the most appropriate
econometric specification and evaluate the effectiveness of the shrinkage
model. We design a pseudo out-of-sample prediction exercise that quanti-
fies the potential gains or losses from different models. For this exercise,
we take cities that have at least fifty observations per year for at least two
years. This leads to 58 cities with 55,155 total observations. Then, for each
city j,

1. Randomly choose nhold observations out of njt observations for each
time t = 2005, 2006, . . . , 2010 in city j. We keep those 6 × nhold
observations as well as the remaining sample of data from other
cities.

2. Estimate each of models using the method described in section 1.
3. Generate predictions for sample held out in step 1 for city j based on

the method in section 2.
4. Compute and store the prediction error for this holdout sample.

{ej,r,1, ej,r,2, . . . , ej,r,(njt−nhold )} (forecast errors are defined as predicted
minus actual).

5. Repeat steps 1 to 4 for r = 1, 2, . . . , R.
6. Repeat steps 1 to 5 for each city j = 1, . . . , J .
7. Compute aggregated out-of-sample prediction evaluation statistics.

For example, the MSE for the city j is computed as

MSE( j) = 1

R × (nj,t − nhold)

R∑
r=1

(njt−nhold )∑
i=1

e2
r, j,i, (B15)

where we set R = 30. We perform for nhold = 3 (small sample size) and
nhold = 30 (moderate sample size) for each city. About 35% of MSAs in
our sample have observations less than or equal to eighteen observations
(approximately three per year in our data set), and about 81% of MSAs
in our sample have observations less than equal to 180 (which is approx-
imately thirty per year in our data set). We report average MSE( j) over
j = 1, 2, . . . 58.

The unshrunken estimates are based on the fixed-effect estimation. The
estimator is defined as γ̂j = (Z ′

j Zj)
−1(Z ′

j (ln rj−Xjβ) and used in equation B5.
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TABLE APPENDIX

Table A1.—Estimated Coefficients on Covariates in

Preferred Specification

Estimated Standard
Covariate Coefficient Error t-Statistic p-Value

Log Lot Size −0.543 0.0037 −146.134 0.000
(Log Lot Size Squared)/100 −3.053 0.1592 −19.176 0.000
(Log Lot Size Cubed)/1000 3.601 0.2498 14.415 0.000
Log Distance to Coast −0.052 0.0043 −12.196 0.000
Planned use

None Listed −0.182 0.0112 −16.193 0.000
Commercial −0.380 0.0599 −6.354 0.000
Industrial −0.346 0.0141 −24.578 0.000
Retail 0.255 0.0134 18.963 0.000
Single Family 0.003 0.0133 0.202 0.840
Multifamily −0.139 0.0198 −7.055 0.000
Office 0.046 0.0148 3.129 0.002
Apartment 0.288 0.0196 14.713 0.000
Hold for Development −0.073 0.0118 −6.171 0.000
Hold for Investment −0.283 0.0195 −14.523 0.000
Mixed Use 0.250 0.0265 9.438 0.000
Medical 0.171 0.0355 4.810 0.000
Parking 0.076 0.0373 2.044 0.041

This table reports the coefficients on the covariates from the preferred specification in table 1 from the
main body of the text, which applies shrinkage to a model with a quartic polynomial in log distance to the
city center plus 1 mile.


